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Abstract
Single-species surplus production models are often used to assess multispecies assemblages in data-poor situations

where catch and effort data are insufficient to perform individual species assessments. We examined the performance
of single-species surplus production models applied to aggregated multispecies assemblages and explored the incor-
poration of time-varying parameters to improve model estimates. We simulated the dynamics of three species with
different intrinsic growth rates and survey catchabilities over 50 years in the presence of fishing and a single fishery-
independent survey. Schaefer surplus production models with and without time-varying growth rate and catchability
were fitted to simulated data. We then compared the ability of each model to accurately estimate multispecies max-
imum sustainable yield and terminal year biomass and to accurately reflect overall trends in individual component
stocks. All models produced biased estimates, but the accuracy of multispecies assemblage maximum sustainable
yield was improved with the incorporation of time-varying parameters. The terminal biomass of the assemblage was
best estimated by a basic production model in two of three scenarios. Multispecies assemblage trends were not reflec-
tive of all individual component species, resulting in situations in which some species were overexploited and others
underexploited. Although the incorporation of time-varying parameters improved the accuracy of some estimates in
this application, the direction and magnitude of bias may not be predictable unless the relative differences in growth
rate and catchability among species in the assemblage are known. If single-species surplus production models are the
only viable option for modeling assemblages, precautionary reference points should be adopted. Scaling the level of
precaution to the range of growth rates among species in the assemblage is recommended.

Determining the status of data-poor fish species is an im-
portant challenge facing many fisheries management agencies.
Interest in assessing data-poor fish stocks has increased in re-
cent years in the USA following the reauthorization of the
Magnuson–Stevens Act of 2006, which required catch limits
for all marine and anadromous species with federal fishery man-
agement plans. However, many data-poor species lack the catch,
effort, and life history information necessary to conduct single-
species assessments for specifying catch limits either because

*Corresponding author: gnesslage@asmfc.org
Received February 19, 2012; accepted August 8, 2012

several species in the same region are difficult to distinguish
or collecting species-specific data is cost prohibitive. In such
circumstances, one approach is to aggregate and assess multiple
species using a single-species surplus production model (SSPM;
Pauly 1984; Sparre and Venema 1998). Single-species surplus
production models have been applied to many multispecies
assemblages, including tropical fishes (Ralston and Polovina
1982), sharks (McAllister et al. 2001; SEDAR 2006, 2007; Jiao
et al. 2009), demersal fishes (Brander 1977; Mueter and Megrey
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FIGURE 1. Hypothetical example of single-species and multispecies yields as
a function of exploitation rate when the intrinsic growth rate (r) differs among
species and all species are subject to the same exploitation rate. MSMSY is
the maximum sustainable yield for the multispecies assemblage; E3 is the
exploitation rate at which species 3 is extirpated, and E2 is the exploitation
rate at which species 2 is extirpated.

2006), Northwest Atlantic finfish (Brown et al. 1976), and mul-
tispecies fisheries in developing countries (Koslow et al. 1994;
Gascuel and Ménard 1997; Ould Dedah et al. 1999; Halls et al.
2006; Lachica-Aliño et al. 2006).

The ability to assess data-poor stocks with SSPMs is appeal-
ing in its simplicity. However, such assessments are likely to
violate the underlying assumption that the data used in an SSPM
come from a homogeneous stock (Prager 1994; Quinn and De-
riso 1999). This assumption will almost always be violated be-
cause catchability, life history, and fishing pressure likely differ
among the individual species in an assemblage (Fox 1974; Bran-
der 1977; Pauly 1984; Sparre and Venema 1998). In the extreme
case, managing according to the results of an assessment in
which the assumption of stock homogeneity is violated has the
potential to functionally extirpate one or more species within
the assemblage because the parabolic yield curve underlying
an SSPM may not be reversible (Kirkwood 1982; Pauly 1984;
Sparre and Venema 1998). Consider a hypothetical example in
which growth rates differ among the species in an assemblage
and management is aimed at achieving multispecies maximum
sustainable yield (MSMSY; Figure 1). Species 1 would be extir-
pated if exploitation was sustained above level E3, and species
2 would be extirpated above level E2. In this example, exploita-
tion levels above MSMSY cannot necessarily be reduced with
the expectation that yields will return to MSMSY.

Although the theoretical implications of applying SSPMs
to multispecies assemblages have been explored (Brown et al.
1976; Pope 1976a, 1979; Kirkwood 1982; Pauly 1984), the per-
formance of statistically fitted, nonequilibrium SSPMs in as-
sessing heterogeneous multispecies assemblages has not been
rigorously evaluated. Kleiber and Maunder (2008) demonstrated
the consequences of pooling catch-per-unit-effort (CPUE) data
across multiple species to form a single index of abundance.

The resulting index was found to be reflective of the changes in
true abundance only in the unlikely event that all species have
the same catchability. Aggregate CPUE did not track aggre-
gate abundance even in situations where the component single-
species indices were accurate. Although aggregating CPUE may
be a convenient way to treat data, aggregate CPUE is likely to
provide misleading trends in relative abundance and should not
be relied upon for management (Maunder et al. 2006; Kleiber
and Maunder 2008).

One potential method of implicitly accounting for changes
in the aggregate catchability or life history parameters of a mul-
tispecies assemblage is to allow parameters to vary over time.
If individual biomass trends differ among species in an assem-
blage as a result of variation in life history characteristics (e.g.,
growth or availability to survey gear), the aggregate parameters
describing multispecies assemblage dynamics (e.g., assemblage
growth rate or catchability) will change over time. For example,
if an assemblage such as the hypothetical example in Figure 1
is managed to achieve MSMSY, species 3 will decline over
time and become a smaller proportion of the assemblage; as
a result, the average aggregate growth rate will increase. If an
SSPM is used to assess a heterogeneous multispecies assem-
blage, the incorporation of time-varying growth or catchability
parameters may help account for the resulting changes in aggre-
gate dynamics and improve model performance. Wilberg et al.
(2010) reviewed the estimation of time-varying catchability in
SSPMs and suggested the use of such parameters to account
for multiple known or unknown causes of changing catchabil-
ity when assessing a single stock; however, to our knowledge,
time-varying parameters have not been applied to SSPMs in
multispecies assemblage assessments.

In this study we examined the implications of using SSPMs
to assess multispecies assemblages when growth rate and catch-
ability differ among species. The goals of our study were to
(1) evaluate the ability of traditional SSPMs to assess multi-
species dynamics, (2) determine whether SSPMs with time-
varying parameters improve model performance, and (3) assess
the potential ramifications of using SSPM-based assemblage
reference points when conservation of individual species within
the assemblage is desired. We were specifically interested in the
ability of SSPMs to provide accurate stock status information
for management of a multispecies assemblage and to monitor its
component stocks. Therefore, we compared the relative errors in
MSMSY and terminal biomass estimates generated by SSPMs
with and without time-varying parameters. We also explored the
use of SSPMs to monitor individual stocks by comparing the
overall estimated trend in total multispecies assemblage biomass
with that of its individual component stocks.

METHODS
We conducted a simulation study to evaluate the ability

of SSPMs to estimate the dynamics of multispecies assem-
blages. We simulated the dynamics of an assemblage of three
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SURPLUS PRODUCTION MODELS TO ASSESS MULTISPECIES ASSEMBLAGES 1139

noninteracting species with different intrinsic growth rates and
catchabilities over 50 years in the presence of fishing and a
single fishery-independent survey. Three SSPMs were fitted to
the simulated data: a traditional SSPM, an SSPM with a time-
varying intrinsic growth rate, and an SSPM with time-varying
catchability. We then compared the ability of each model to
accurately estimate MSMSY and terminal assemblage biomass
and to reflect the changes over time in the relative biomass of
individual component stocks. The simulations were performed
in AD Model Builder (Fournier et al. 2012).

Simulation model.—We simulated the population dynamics
of three species individually using an independent, discrete-
time, deterministic, logistic population model, namely,

Bs,t+1 =
[
Bs,t + rsBs,t

(
1 − Bs,t

Ks

)]
(1 − Ut ) , (1)

where Bs,t was the biomass in year t for species s, rs was the
intrinsic rate of increase for species s, Ks was carrying capacity
for species s, and Ut was the fishery exploitation rate in year t.
We assumed that Bs,0 was equal to Ks in the first year and that the
fishery occurred at the end of each year. To avoid complications
that arise when SSPMs are confronted with uninformative time
series, we simulated fisheries dynamics in which U varied over
time. The exploitation rate of the simulated fishery increased
from 2.5% in year 1 to a peak of 20% in year 15. The exploita-
tion rate then decreased to 10% for years 16–24 and to 5% for
years 25–50. This exploitation rate time series avoided the gen-
eration of unidirectional trends in biomass that would prevent
independent estimation of the r and K parameters (i.e., one-way
trips; Hilborn and Walters 1992). The same time series of Ut

was applied to each species in a given year. We summed catch
across all three species in each year to generate total fishery
catch (C) for input into the estimation model, that is,

Ct =
3∑

s=1

[
Bs,t + rsBs,t

(
1 − Bs,t

Ks

)]
Ut . (2)

We generated an index of biomass (I) for the multispecies as-
semblage from a simulated survey that encountered all three
species, namely,

It =
(

3∑
s=1

qsBs,t

)
eεt , (3)

where qs was the catchability of species s and εt were observa-
tion errors from a normal distribution with a mean of zero and
a standard deviation (SD) of 0.2. We also considered observa-
tion errors with an SD of 0.5. All assessment models exhibited
wider variability in their estimates, but the overall performance
was similar to the results with an SD of 0.2; therefore, we only
present results with the lower observation error.

Estimation model.—We fit a Schaefer surplus production
model (Quinn and Deriso 1999) to aggregate catch and an index
of biomass. Assemblage biomass followed the logistic growth
model

B̂t+1 = B̂t + r̂t B̂t

(
1 − B̂t

K̂

)
− Ct . (4)

where B̂t , r̂t , and K̂ were the estimated assemblage biomass at
time t, the intrinsic growth rate at time t, and carrying capacity,
respectively. The estimated index of biomass, Ît , was the product
of catchability and assemblage biomass, that is,

Ît = q̂t B̂t , (5)

where q̂t was survey catchability at time t. The estimation model
assumed that total catch was known without error. For models
with time-varying parameters, either r̂ or q̂ was allowed to vary
according to a random walk on the log scale, that is,

loge q̂t+1 = loge q̂t + ωt, or (6)

loge r̂t+1 = loge r̂t + ωt , (7)

with annual deviations (ωt) from a normal distribution with a
mean of zero and a standard deviation of 0.1. Although larger
standard deviation values are typically used when modeling
time-varying parameters as random walks (e.g., Wilberg and
Bence 2006; Fenske et al. 2011), we found that SSPMs would
not converge to unique solutions if the random walk was al-
lowed too much flexibility. Assuming a small standard devia-
tion implies that r and q should not exhibit large interannual
fluctuations, which is to be expected given that these parame-
ters reflect changes due to gradual shifts in species composition.
Assemblage growth rate or survey catchability in the first year
was an estimated parameter.

We obtained parameter estimates by minimizing the concen-
trated negative log-likelihood function

−LL1 = n

2
loge

(∑
(loge(It ) − loge(Ît ))

2
)

. (8)

We assumed multiplicative lognormal observation errors for
the index of biomass. For models with time-varying growth or
catchability, an additional likelihood term, −LL2, defined as

−LL2 = 1

2σ 2

∑
ω2

t , (9)

was included for the random walk deviations.
We generated starting parameter values for the multispecies

assemblage r and q by calculating the biomass-weighted r and q
averaged across all species and years. The starting value for the
multispecies assemblage K was simply the sum of individual
species’ Ks. We assumed that B̂0 was equal to K.
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1140 NESSLAGE AND WILBERG

TABLE 1. Intrinsic growth rates (r) and catchabilities (q) used in the three simulation model scenarios.

r q

Scenario Species 1 Species 2 Species 3 Species 1 Species 2 Species 3

A 0.2 0.13 0.06 0.13 0.13 0.13
B 0.2 0.13 0.06 0.2 0.13 0.06
C 0.2 0.13 0.06 0.06 0.13 0.2

Scenarios.—We developed three scenarios that differed in
relative survey catchability for each species (Table 1). For all
scenarios, we simulated population growth assuming intrinsic
growth rates of 0.2, 0.13, and 0.06 for the three species, reflect-
ing a realistic range of estimated rates found among members
of the small coastal shark complex (blacknose shark Carcharhi-
nus acronotus, finetooth shark Carcharhinus isodon, Atlantic
sharpnose shark Rhizoprionodon terraenovae, and bonnethead
Sphyrna tiburo; SEDAR 2007). Survey catchability was either
(A) the same for all species, (B) higher for species with faster
growth rates, or (C) lower for species with faster growth rates
(Table 1). We chose these scenarios to reflect simplified cases in
which the assumption of constant catchability would be met for
the index of abundance, the index would overweight the most
productive species, or the index would overweight the least
productive species. We set carrying capacity at the same value
(1,000,000) for all three species. For each scenario, 1,000 data
sets were generated assuming the log-scale standard deviation
(SD) of observation error in the survey was 0.2.

Model performance evaluation.—Our evaluation of the
SSPMs applied to multispecies assemblage data concentrated on
three characteristics important to fisheries management, namely,
the models’ ability to (1) estimate the true MSMSY, (2) estimate
the terminal biomass of the multispecies assemblage, and (3) re-
flect overall trends in single-species dynamics.

The estimate of MSMSY for the assemblage was calculated
as the peak yield from the logistic model (Quinn and Deriso
1999), that is,

M̂SMSY = (K̂r̂)

4
. (10)

Because current conditions are often of greatest interest in
fisheries management, we used the terminal year estimates of r̂

to calculate M̂SMSY for models with time-varying parameters.
We calculated the relative error (RE) in MSMSY and terminal

biomass as

RE = estimated − true

true
× 100. (11)

Positive values of RE indicated overestimation, whereas nega-
tive values indicated underestimation. We used the median of the
absolute values of the relative errors as a measure of accuracy.

The change in assemblage biomass relative to the change in
the biomass of each species across the time series was used as
an indicator of the overall direction and magnitude of biomass
trends. The change in assemblage biomass (i.e., relative biomass
[RB]) was calculated as the proportion of biomass in the last year
relative to that in the first year, namely,

R̂B = B̂t=50

B̂t=1
, (12)

and single-species relative biomass was estimated as

RBs = Bs,t=50

Bs,t=1
. (13)

The relative difference (RD) between multispecies change in
biomass and single-species change in biomass was represented
as

RDs = Ds − D̂

Ds
× 100. (14)

Positive values of RD indicated overestimation, whereas neg-
ative values indicated underestimation.

RESULTS

Simulated Population Dynamics
Total biomass and species composition changed throughout

the simulation (Figure 2). As the exploitation rate increased
from 2.5% to 20% over the first 15 years, the biomass of each
species declined steadily. With the decrease in the exploitation
rate to 10% in years 16–24, the rate of decline in assemblage
biomass decreased. In the last 25 years of the simulation, the
assemblage biomass began to increase again at an exploitation
rate of 5%. The species with the highest growth rate (species 1)
gradually became the most abundant species in the assemblage.
The species with the lowest growth rate (species 3) followed
the same biomass trend as the other two species, but eventually
comprised only 12% of the biomass. The relative biomass was
0.72, 0.51, and 0.16 for species 1, 2, and 3, respectively.
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FIGURE 2. Trends in the relative biomass of three species with different
intrinsic growth rates being managed as a multispecies assemblage.

Estimation Model Performance
Both the basic SSPMs and models with time-varying param-

eters produced positively biased estimates of MSMSY in all
scenarios; however, the most accurate model in each scenario
was either the time-varying r or q model (Figure 3). The median
relative errors for MSMSY were positively biased by 7–29%
across scenarios. Although the time-varying models produced
more variable estimates than the basic SSPM, their estimates
of MSMSY were more accurate (Table 2). The time-varying r
model produced the most accurate estimates of MSMSY when
catchability was constant across species. The time-varying q
model produced the most accurate estimates of MSMSY when
both r and q varied among species.

The median relative errors of terminal assemblage biomass
were positively biased by 12–41% (Figure 4). However, some
scenarios resulted in median estimates of terminal biomass that
were negatively biased by 4–29%, particularly scenario C. As
with MSMSY, the estimates from the basic SSPM produced
the lowest variation in relative error across scenarios. The basic
SSPM produced the most accurate estimates of terminal assem-

TABLE 2. Medians of the absolute values of the relative errors for estimates
of multispecies maximum sustainable yield (MSMSY) and terminal assemblage
biomass. The scenarios are described more fully in Table 1. Model types include
the base (Schaefer) model, TVr (Schaefer model with time-varying intrinsic
growth rate), and TVq (Schaefer model with time-varying catchability).

Variable Scenario Base TVr TVq

MSMSY A 18 11 20
B 25 29 15
C 17 17 13

Terminal biomass A 12 16 19
B 38 41 24
C 18 20 29
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FIGURE 3. Comparison of the relative errors (REs) in estimating multispecies
maximum sustainable yield among three alternative single-species surplus pro-
duction models (base = the Schaefer model, TVr = the Schaefer model with a
time-varying intrinsic growth rate, and TVq = the Schaefer model with time-
varying catchability). Panel (A) compares REs when the growth rate differs
among species in a multispecies assemblage. In panels (B) and (C), both growth
rate and catchability differ; in panel B catchability is higher for species with
faster growth rates, whereas in panel C catchability is higher for species with
slower growth rates. The lower and upper boundaries of the boxes indicate the
25th and 75th percentiles, the dark horizontal lines indicate the medians, and the
whiskers indicate the 10th and 90th percentiles. Positive values of RE indicate
overestimation and negative values indicate underestimation.

blage biomass for scenarios A and C (Table 2). Time-varying
models exhibited more variability within a scenario, but the
amount of bias depended on the scenario. The time-varying q
model was most accurate when the species with the lowest q
also had the lowest r.

Multispecies assemblage trends were not reflective of all in-
dividual component species such that relative biomass was over-
estimated for some species and underestimated for others. All
of the assessment models produced biased estimates of relative
biomass for individual species in almost all scenarios (Figure 5).
The relative difference between multispecies and single-species
change in biomass was generally overestimated for species 1
(ranging from 12% to 49%), was scenario and model depen-
dent for species 2 (ranging from −23% to + 28%), and was
grossly underestimated for species 3 (ranging from −291% to

D
ow

nl
oa

de
d 

by
 [

G
en

ev
ie

ve
 N

es
sl

ag
e]

 a
t 0

5:
56

 0
2 

N
ov

em
be

r 
20

12
 



1142 NESSLAGE AND WILBERG

-6
0

-2
0

20
60

A

-6
0

-2
0

20
60

R
el

at
iv

e 
er

ro
r (

%
) B

Base TVr TVq

-6
0

-2
0

20
60

C

Scenario

FIGURE 4. Comparison of the relative errors in estimating the terminal
biomass of a multispecies assemblage among three alternative single-species
surplus production models. See Figure 3 for additional details.

−127%). The relative biomass of species 2, the species with
average values of r and q, was most similar to that of the en-
tire assemblage; such an averaging effect would be expected in
circumstances where a single model used to represent multi-
ple species returns estimates of the average species conditions.
The relative biomass of species 2 was slightly lower than that
of the assemblage when the species with the lowest q also had
the lowest r (Figure 5B) and slightly higher than that of the
assemblage when the species with the highest q had the lowest
r (Figure 5C). In contrast, assemblage relative biomass was al-
most always higher than that of species 1 (highest r), resulting
in positive RDs for most simulations. The relative biomass of
species 3 (lowest r) was always much higher than that of the
assemblage, resulting in extremely large negative RD values for
all simulations. The incorporation of time-varying parameters
did not substantially improve RD.

DISCUSSION
Our simulation study showed how the estimates of important

management quantities such as MSMSY and terminal biomass
generated by SSPMs are biased if the assemblage being as-
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FIGURE 5. Comparison of the relative differences (RDs) between multi-
species assemblage and individual component species changes in biomass over
time among three alternative single-species surplus production models. The
models are designated as in Figures 3 and 4 except that the base model is now
denoted by the letter B; the numbers 1–3 indicate the three species. Positive val-
ues of RD indicate that the relative biomass of the assemblage was greater than
that of the individual species; negative values of RD indicate that the relative
biomass of the assemblage was less than that of the individual species.

sessed is heterogeneous with regard to intrinsic growth rate and
catchability. Kleiber and Maunder (2008) demonstrated how
multistock-aggregated CPUE is not an acceptable index of abun-
dance unless catchability is the same among all stocks. Our
study expands upon their work by fitting SSPMs with and with-
out time-varying parameters to aggregated multispecies data
and showing that, even when catchabilities are the same, model
estimates will still be biased if growth rates differ among stocks.
In all of our scenarios, MSMSY was overestimated, while the
direction and magnitude of the bias in assemblage biomass de-
pended on the growth rates and catchabilities of the individual
species within the assemblage and the parameter chosen to vary
over time. In many data-poor situations, too little information is
available on individual species’ life histories and relative catch-
ability to confidently select which parameter (if any) to vary
over time. Although intrinsic growth rate can be estimated us-
ing known life history characteristics, catchability is likely to be
unknown in most data-poor situations.

Our results underestimate the potential bias in SSPM
estimates because model-fitting conditions were simplified
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SURPLUS PRODUCTION MODELS TO ASSESS MULTISPECIES ASSEMBLAGES 1143

in several ways: (1) the correct assessment model was used
given the logistic growth pattern used to simulate population
dynamics for each species, (2) fishery catch was provided to the
model without error, (3) the parameters for each species were
constant over time (i.e., there was no process error), and (4)
all species were subject to the same highly informative pattern
of fishing mortality. These simplifications were chosen so that
the evaluation of SSPM performance in regard to multispecies
assemblages could be evaluated separately from more general
production model performance issues that have been thoroughly
examined already (Prager 1994). The incorporation of more
realistic modeling situations (e.g., errors in catch, one-way trip
time series) would decrease model performance.

Several simplifying assumptions were also made when simu-
lating multispecies dynamics: (1) fishing mortality was assumed
to be the same across all species, (2) all species had the same
carrying capacity, (3) species did not interact, and (4) the fishery
did not switch target species, as is often observed in develop-
ing fisheries (e.g., Regier and Loftus 1972). Real-world assem-
blages experience some or all of these complicating factors and
may have more complicated and potentially unpredictable dy-
namics (Pope 1976b; Ralston and Polovina 1982; Sparre and
Venema 1998). However, it is unlikely that these more compli-
cated situations would result in better model performance than
that of the simplified situations presented in this study. There-
fore, biased estimates of MSMSY and terminal biomass should
be anticipated when SSPMs are used to assess multispecies
assemblages.

We encourage stock assessment scientists to carefully con-
sider the assumptions that will be violated and how those viola-
tions will affect the management advice provided by an SSPM
(Schnute and Richards 2001). The application of single-species
surplus production models to multispecies assemblages has been
shown to produce more precise results than single-species as-
sessments (Pope 1979; Ralston and Polovina 1982), but we have
shown in this study that SSPMs also tend to produce biased re-
sults. Increased precision should not be achieved at the expense
of decreased accuracy. Both precision and accuracy should be
considered when weighing the relative benefits of adopting a
single versus a multispecies approach.

We found that the incorporation of time-varying growth and
catchability parameters using random walks could improve the
accuracy of MSMSY and terminal biomass estimates. We cau-
tion that time-varying parameters may not be estimable in many
real-world situations because times series data tend to be less in-
formative than those we simulated. In four out of six scenarios,
models with time-varying parameters produced the most accu-
rate results (Table 2; Figures 4B, 5B); however, the basic SSPM
produced more accurate estimates of terminal biomass, whereas
models with time-varying parameters tended to produce the
most accurate estimates of MSMSY. When faced with a data-
poor situation in which an SSPM is the only viable modeling
option, the incorporation of time-varying parameters may be the
most reasonable approach if MSMSY is the management goal.

However, the best choice of parameters to vary over time and
the direction and magnitude of the resulting bias may not be pre-
dictable unless the relative difference in r and q among species
in the assemblage is known. Another advantage of incorporating
time-varying parameters may be that estimates of uncertainty
are more realistically represented; in our study, models with
time-varying parameters produced a wider range of estimates
(i.e., wider confidence intervals) than traditional SSPMs.

Bayesian estimation of SSPM parameters has been sug-
gested as a better method for assessing multispecies assem-
blages (McAllister et al. 2001; Jiao et al. 2009). Bayesian esti-
mation methods that assume constant r and q will also produce
biased estimates if the composition of the multispecies com-
plex changes over time due to overexploitation of some species
and underexploitation of others. Bayesian estimation techniques
may, however, provide a workable solution in one-way trip situ-
ations if credible informative priors can be developed for some
or all of the parameters. Likewise, strongly informative priors
that are accurately specified may reduce the bias in estimates.

Even if less biased estimates could be generated with the use
of time-varying parameters in SSPMs, severe overexploitation
of species within the assemblage and the potential loss of yield
may still occur. Fishing at a rate to achieve a target biomass of
a multispecies assemblage may be a risky management strat-
egy if all components of the assemblage are valued enough
to be conserved (May et al. 1979; Larkin 1982). As shown in
Figure 1, if MSMSY target estimates are biased, one or more
component species could be functionally extirpated while to-
tal yield for the assemblage remains high (Paulik et al. 1967;
Pauly 1984; Jensen 1991). We found the species with the low-
est r was severely depleted by the end of the time series even
though the biomass of the multispecies assemblage as a whole
was increasing (Figure 2). In contrast, the species with the high-
est r was underexploited, resulting in lost yield and a missed
opportunity for the fishery. Several authors have argued that
a fishery cannot be optimized for more than one species at a
time and that, ultimately, some species in a multispecies fishery
will be overexploited while others are underexploited (Jensen
1991, 1999; Dichmont et al. 2006). Pope (1974) showed theo-
retically how a multispecies fishery MSMSY could be attained
only though a set of complicated catch quotas. Jensen (1999)
simulated the population and fishery dynamics of eight Great
Lakes cisco species Coregonus spp. caught in the same mul-
tispecies fishery and with the same gear and assessed them
using a two-species surplus production model with no interspe-
cific interactions; extinction of up to half of the species was a
common result in his simulations. Using a similar model for
two species, Jensen (1991) showed that fishing at the multi-
species fishing mortality rate that produces the maximum sus-
tainable yield (Fmsy) would lead to the extirpation of lake trout
Salvelinus namaycush if managed and assessed jointly with
lake whitefish Coregonus clupeaformis. Dichmont et al. (2006)
performed a management strategy evaluation on a two-species
tiger prawn Penaeus esculentus and P. semisulcatus fishery and
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determined that none of the proposed management strategies
allowed the stock size of both species to remain above the
spawning stock size at maximum sustainable yield. Prevent-
ing overfishing of some members of a multispecies assemblage
may be impossible if life histories or catchabilities differ or the
multispecies fishery uses unselective gear (Pope 1976b, 1979;
Pauly 1984).

For U.S. marine fisheries, the 2006 reauthorization of the
Magnuson–Stevens Fishery Conservation and Management Act
requires the management of individual fish stocks as a unit
throughout their range; if that is not practical, a group of inter-
related fish stocks may be managed as a unit. Due to the lack
of species-specific data collection and the logistical challenges
of assessing numerous species, many regional fisheries man-
agement councils have moved toward assessing some groups
of species as stock complexes (Carmichael and Fenske 2011).
For this approach to be successful, the life history and fishery
characteristics of the species in the complex must be homoge-
neous (Cope et al. 2011). Defining appropriate stock complexes
that, when assessed as a group, will not result in overexploita-
tion of component stocks will be a serious challenge in regions
with limited life history research and data collection programs
(Carmichael and Fenske 2011). For management of stock com-
plexes to be effective, stocks must be grouped into assemblages
based on their productivity and catchability, with the groupings
being as similar as possible. In many cases, though, species
have been grouped together based on the similarity of appear-
ance or taxonomy, which may not correspond to the similarity
in productivity or catchability (e.g., sharks).

When adequate data are available, species should be as-
sessed individually, jointly (Punt et al. 2011), or as a multi-
species assemblage using stock assessment models that specifi-
cally account for interspecific or fishery gear interactions among
component stocks (Hollowed et al. 2000), such as multispecies
configurations of the surplus production model (Pope 1976b;
Arreguin-Sanchez et al. 1992; Spencer and Collie 1997; Gam-
ble and Link 2009), yield-per-recruit model (Pikitch 1987), or
multispecies age-structured stock assessment methods (Helga-
son and Gislason 1979; Gislason and Helgason 1985; Jurado-
Molina et al. 2005). We acknowledge that data limitations pro-
hibit the use of multispecies models in many cases. If a few
years of recent species-specific catch or survey data are avail-
able, the performance of production models may be improved if
they can be modified to incorporate species-specific data at the
end of the time series. However, if species-specific data are not
available and SSPMs are the only viable modeling option, pre-
cautionary reference points should be adopted. More precaution
than is typically considered reasonable for single-species fish-
eries may be needed to account for the expected bias in SSPM
estimates of MSMSY. A reasonable ad hoc approach may be to
scale the level of precaution to the range of growth rates among
species in the assemblage, such that more precautionary man-
agement is adopted as the range in r increases among species in
the assemblage.
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